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Abstract

In recent years, unfolding iterative algorithms as neural networks has become an
empirical success in solving sparse recovery problems. However, its theoretical
understanding is still immature, which prevents us from fully utilizing the power
of neural networks. In this work, we study unfolded ISTA (Iterative Shrinkage
Thresholding Algorithm) for sparse signal recovery. We introduce a weight struc-
ture that is necessary for asymptotic convergence to the true sparse signal. With this
structure, unfolded ISTA can attain a linear convergence, which is better than the
sublinear convergence of ISTA/FISTA in general cases. Furthermore, we propose
to incorporate thresholding in the network to perform support selection, which
is easy to implement and able to boost the convergence rate both theoretically
and empirically. Extensive simulations, including sparse vector recovery and a
compressive sensing experiment on real image data, corroborate our theoretical
results and demonstrate their practical usefulness. We have made our codes publicly
available.2.

1 Introduction
This paper aims to recover a sparse vector x∗ from its noisy linear measurements:

b = Ax∗ + ε, (1)
where b ∈ Rm, x ∈ Rn, A ∈ Rm×n, ε ∈ Rm is additive Gaussian white noise, and we have m� n.
(1) is an ill-posed, highly under-determined system. However, it becomes easier to solve if x∗ is
assumed to be sparse, i.e. the cardinality of support of x∗, S = {i|x∗i 6= 0}, is small compared to n.

A popular approach is to model the problem as the LASSO formulation (λ is a scalar):

minimize
x

1

2
‖b−Ax‖22 + λ‖x‖1 (2)

and solve it using iterative algorithms such as the iterative shrinkage thresholding algorithm (ISTA)
[1]:

xk+1 = ηλ/L

(
xk +

1

L
AT (b−Axk)

)
, k = 0, 1, 2, . . . (3)

∗These authors contributed equally and are listed alphabetically.
2https://github.com/xchen-tamu/linear-lista-cpss
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where ηθ is the soft-thresholding function3 and L is usually taken as the largest eigenvalue of ATA.
In general, ISTA converges sublinearly for any given and fixed dictionary A and sparse code x∗ [2]

In [3], inspired by ISTA, the authors proposed a learning-based model named Learned ISTA (LISTA).
They view ISTA as a recurrent neural network (RNN) that is illustrated in Figure 1(a), where
W1 = 1

LA
T , W2 = I − 1

LA
TA, θ = 1

Lλ. LISTA, illustrated in Figure 1(b), unrolls the RNN and
truncates it into K iterations:

xk+1 = ηθk(W k
1 b+W k

2 x
k), k = 0, 1, · · · ,K − 1, (4)

leading to a K-layer feed-forward neural network with side connections.

Different from ISTA where no parameter is learnable (except the hyper parameter λ to be tuned),
LISTA is treated as a specially structured neural network and trained using stochastic gradient descent
(SGD), over a given training dataset {(x∗i , bi)}Ni=1 sampled from some distribution P(x, b). All the
parameters Θ = {(W k

1 ,W
k
2 , θ

k)}K−1
k=0 are subject to learning. The training is modeled as:

minimize
Θ

Ex∗,b
∥∥∥xK(Θ, b, x0

)
− x∗

∥∥∥2

2
. (5)

Many empirical results, e.g., [3–7], show that a trainedK-layer LISTA (withK usually set to 10 ∼ 20)
or its variants can generalize more than well to unseen samples (x′, b′) from the same P(x, b) and
recover x′ from b′ to the same accuracy within one or two order-of-magnitude fewer iterations than
the original ISTA. Moreover, the accuracies of the outputs {xk} of the layers k = 1, ..,K gradually
improve.

(a) RNN structure of ISTA. (b) Unfolded learned ISTA Network.

Figure 1: Diagrams of ISTA and LISTA.

1.1 Related Works
Many recent works [8, 9, 4, 10, 11] followed the idea of [3] to construct feed-forward networks by
unfolding and truncating iterative algorithms, as fast trainable regressors to approximate the solutions
of sparse coding models. On the other hand, progress has been slow towards understanding the
efficient approximation from a theoretical perspective. The most relevant works are discussed below.

[12] attempted to explain the mechanism of LISTA by re-factorizing the Gram matrix of dictionary,
which tries to nearly diagonalize the Gram matrix with a basis that produces a small perturbation of
the `1 ball. They re-parameterized LISTA into a new factorized architecture that achieved similar
acceleration gain to LISTA. Using an “indirect” proof, [12] was able to show that LISTA can converge
faster than ISTA, but still sublinearly. Lately, [13] tried to relate LISTA to a projected gradient descent
descent (PGD) relying on inaccurate projections, where a trade-off between approximation error and
convergence speed was made possible.

[14] investigated the convergence property of a sibling architecture to LISTA, proposed in [4], which
was obtained by instead unfolding/truncating the iterative hard thresholding (IHT) algorithm rather
than ISTA. The authors argued that they can use data to train a transformation of dictionary that
can improve its restricted isometry property (RIP) constant, when the original dictionary is highly
correlated, causing IHT to fail easily. They moreover showed it beneficial to allow the weights to
decouple across layers. However, the analysis in [14] cannot be straightforwardly extended to ISTA
although IHT is linearly convergent [15] under rather strong assumptions.

In [16], a similar learning-based model inspired by another iterative algorithm solve LASSO, approx-
imated message passing (AMP), was studied. The idea was advanced in [17] to substituting the AMP

3Soft-thresholding function is defined in a component-wise way: ηθ(x) = sign(x)max(0, |x| − θ)
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proximal operator (soft-thresholding) with a learnable Gaussian denoiser. The resulting model, called
Learned Denoising AMP (L-DAMP), has theoretical guarantees under the asymptotic assumption
named “state evolution.” While the assumption is common in analyzing AMP algorithms, the tool is
not directly applicable to ISTA. Moreover, [16] shows L-DAMP is MMSE optimal, but there is no
result on its convergence rate. Besides, we also note the empirical effort in [18] that introduces an
Onsager correction to LISTA to make it resemble AMP.

1.2 Motivations and Contributions
We attempt to answer the following questions, which are not fully addressed in the literature yet:

• Rather than training LISTA as a conventional “black-box” network, can we benefit from
exploiting certain dependencies among its parameters {(W k

1 ,W
k
2 , θ

k)}K−1
k=0 to simplify the

network and improve the recovery results?
• Obtained with sufficiently many training samples from the target distribution P(x, b), LISTA

works very well. So, we wonder if there is a theoretical guarantee to ensure that LISTA (4)
converges 4 faster and/or produces a better solution than ISTA (3) when its parameters are
ideal? If the answer is affirmative, can we quantize the amount of acceleration?

• Can some of the acceleration techniques such as support detection that were developed for
LASSO also be used to improve LISTA?

Our Contributions: this paper aims to introduce more theoretical insights for LISTA and to further
unleash its power. To our best knowledge, this is the first attempt to establish a theoretical convergence
rate (upper bound) of LISTA directly. We also observe that the weight structure and the thresholds
can speedup the convergence of LISTA:

• We give a result on asymptotic coupling between the weight matrices W k
1 and W k

2 . This
result leads us to eliminating one of them, thus reducing the number of trainable parameters.
This elimination still retains the theoretical and experimental performance of LISTA.
• ISTA is generally sublinearly convergent before its iterates settle on a support. We prove

that, however, there exists a sequence of parameters that makes LISTA converge linearly
since its first iteration. Our numerical experiments support this theoretical result.

• Furthermore, we introduce a thresholding scheme for support selection, which is extremely
simple to implement and significantly boosts the practical convergence. The linear conver-
gence results are extended to support detection with an improved rate.

Detailed discussions of the above three points will follow after Theorems 1, 2 and 3, respectively.
Our proofs do not rely on any indirect resemblance, e.g., to AMP [18] or PGD [13]. The theories
are supported by extensive simulation experiments, and substantial performance improvements are
observed when applying the weight coupling and support selection schemes. We also evaluated
LISTA equipped with those proposed techniques in an image compressive sensing task, obtaining
superior performance over several of the state-of-the-arts.

2 Algorithm Description
We first establish the necessary condition for LISTA convergence, which implies a partial weight
coupling structure for training LISTA. We then describe the support-selection technique.

2.1 Necessary Condition for LISTA Convergence and Partial Weight Coupling
Assumption 1 (Basic assumptions). The signal x∗ and the observation noise ε are sampled from the
following set:

(x∗, ε) ∈ X (B, s, σ) ,
{

(x∗, ε)
∣∣∣|x∗i | ≤ B, ∀i, ‖x∗‖0 ≤ s, ‖ε‖1 ≤ σ}. (6)

In other words, x∗ is bounded and s-sparse5 (s ≥ 2), and ε is bounded.

Theorem 1 (Necessary Condition). Given {W k
1 ,W

k
2 , θ

k}∞k=0 and x0 = 0, let b be observed by
(1) and {xk}∞k=1 be generated layer-wise by LISTA (4). If the following holds uniformly for any

4 The convergence of ISTA/FISTA measures how fast the k-th iterate proceeds; the convergence of LISTA
measures how fast the output of the k-th layer proceeds as k increases.

5A signal is s-sparse if it has no more than s non-zero entries.
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(x∗, ε) ∈ X (B, s, 0) (no observation noise):

xk
(
{W τ

1 ,W
τ
2 , θ

τ}k−1
τ=0, b, x

0
)
→ x∗, as k →∞

and {W k
2 }∞k=1 are bounded

‖W k
2 ‖2 ≤ BW , ∀k = 0, 1, 2, · · · ,

then {W k
1 ,W

k
2 , θ

k}∞k=0 must satisfy

W k
2 − (I −W k

1 A)→ 0, as k →∞ (7)

θk → 0, as k →∞. (8)

Proofs of the results throughout this paper can be found in the supplementary. The conclusion (7)
demonstrates that the weights {W k

1 ,W
k
2 }∞k=0 in LISTA asymptotically satisfies the following partial

weight coupling structure:
W k

2 = I −W k
1 A. (9)

We adopt the above partial weight coupling for all layers, letting W k = (W k
1 )T ∈ <m×n, thus

simplifying LISTA (4) to:

xk+1 = ηθk
(
xk + (W k)>(b−Axk)

)
, k = 0, 1, · · · ,K − 1, (10)

where {W k, θk}K−1
k=0 remain as free parameters to train. Empirical results in Fig. 3 illustrate that the

structure (9), though having fewer parameters, improves the performance of LISTA.

The coupled structure (9) for soft-thresholding based algorithms was empirically studied in [16]. The
similar structure was also theoretically studied in Proposition 1 of [14] for IHT algorithms using the
fixed-point theory, but they let all layers share the same weights, i.e. W k

2 = W2,W
k
1 = W1,∀k.

2.2 LISTA with Support Selection
We introduce a special thresholding scheme to LISTA, called support selection, which is inspired by
“kicking” [19] in linearized Bregman iteration. This technique shows advantages on recoverability
and convergence. Its impact on improving LISTA convergence rate and reducing recovery errors
will be analyzed in Section 3. With support selection, at each LISTA layer before applying soft
thresholding, we will select a certain percentage of entries with largest magnitudes, and trust them
as “true support” and won’t pass them through thresholding. Those entries that do not go through
thresholding will be directly fed into next layer, together with other thresholded entires.

Assume we select pk% of entries as the trusted support at layer k. LISTA with support selection can
be generally formulated as

xk+1 = ηss
pk

θk

(
W k

1 b+W k
2 x

k
)
, k = 0, 1, · · · ,K − 1, (11)

where ηss is the thresholding operator with support selection, formally defined as:

(ηss
pk

θk
(v))i =


vi : vi > θk, i ∈ Spk(v),

vi − θk : vi > θk, i /∈ Spk(v),
0 : −θk ≤ vi ≤ θk
vi + θk : vi < −θk, i /∈ Spk(v),

vi : vi < −θk, i ∈ Spk(v),

where Sp
k

(v) includes the elements with the largest pk% magnitudes in vector v:
Sp

k

(v) =
{
i1, i2, · · · , ipk

∣∣∣|vi1 | ≥ |vi2 | ≥ · · · |vipk | · · · ≥ |vin |}. (12)

To clarify, in (11), pk is a hyperparameter to be manually tuned, and θk is a parameter to train. We use
an empirical formula to select pk for layer k: pk = min(p · k, pmax), where p is a positive constant
and pmax is an upper bound of the percentage of the support cardinality. Here p and pmax are both
hyperparameters to be manually tuned.

If we adopt the partial weight coupling in (9), then (11) is modified as

xk+1 = ηss
pk

θk

(
xk + (W k)T (b−Axk)

)
, k = 0, 1, · · · ,K − 1. (13)
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Algorithm abbreviations For simplicity, hereinafter we will use the abbreviation “CP” for the
partial weight coupling in (9), and “SS” for the support selection technique. LISTA-CP denotes
the LISTA model with weights coupling (10). LISTA-SS denotes the LISTA model with support
selection (11). Similarly, LISTA-CPSS stands for a model using both techniques (13), which has the
best performance. Unless otherwise specified, LISTA refers to the baseline LISTA (4).

3 Convergence Analysis
In this section, we formally establish the impacts of (10) and (13) on LISTA’s convergence. The
output of the kth layer xk depends on the parameters {W τ , θτ}k−1

τ=0, the observed measurement b

and the initial point x0. Strictly speaking, xk should be written as xk
(
{W τ , θτ}k−1

τ=0, b, x
0
)

. By the

observation model b = Ax∗ + ε, since A is given and x0 can be taken as 0, xk therefore depends
on {(W τ , θτ )}kτ=0, x∗ and ε. So, we can write xk

(
{W τ , θτ}k−1

τ=0, x
∗, ε
)

. For simplicity, we instead

just write xk(x∗, ε).

Theorem 2 (Convergence of LISTA-CP). Given {W k, θk}∞k=0 and x0 = 0, let {xk}∞k=1 be generated
by (10). If Assumption 1 holds and s is sufficiently small, then there exists a sequence of parameters
{W k, θk} such that, for all (x∗, ε) ∈ X (B, s, σ), we have the error bound:

‖xk(x∗, ε)− x∗‖2 ≤ sB exp(−ck) + Cσ, ∀k = 1, 2, · · · , (14)

where c > 0, C > 0 are constants that depend only on A and s. Recall s (sparsity of the signals) and
σ (noise-level) are defined in (6).

If σ = 0 (noiseless case), (14) reduces to

‖xk(x∗, 0)− x∗‖2 ≤ sB exp(−ck). (15)

The recovery error converges to 0 at a linear rate as the number of layers goes to infinity. Combined
with Theorem 1, we see that the partial weight coupling structure (10) is both necessary and sufficient
to guarantee convergence in the noiseless case. Fig. 3 validates (14) and (15) directly.

Discussion: The bound (15) also explains why LISTA (or its variants) can converge faster than ISTA
and fast ISTA (FISTA) [2]. With a proper λ (see (2)), ISTA converges at an O(1/k) rate and FISTA
converges at an O(1/k2) rate [2]. With a large enough λ, ISTA achieves a linear rate [20, 21]. With
x̄(λ) being the solution of LASSO (noiseless case), these results can be summarized as: before the
iterates xk settle on a support6,

xk → x̄(λ) sublinearly, ‖x̄(λ)− x∗‖ = O(λ), λ > 0

xk → x̄(λ) linearly, ‖x̄(λ)− x∗‖ = O(λ), λ large enough.

Based on the choice of λ in LASSO, the above observation reflects an inherent trade-off between
convergence rate and approximation accuracy in solving the problem (1), see a similar conclusion in
[13]: a larger λ leads to faster convergence but a less accurate solution, and vice versa.

However, if λ is not constant throughout all iterations/layers, but instead chosen adaptively for each
step, more promising trade-off can arise7. LISTA and LISTA-CP, with the thresholds {θk}K−1

k=0 free to
train, actually adopt this idea because {θk}K−1

k=0 corresponds to a path of LASSO parameters {λk}K−1
k=0 .

With extra free trainable parameters, {W k}K−1
k=0 (LISTA-CP) or {W k

1 ,W
k
2 }K−1

k=0 (LISTA), learning
based algorithms are able to converge to an accurate solution at a fast convergence rate. Theorem 2
demonstrates the existence of such sequence {W k, θk}k in LISTA-CP (10). The experiment results
in Fig. 4 show that such {W k, θk}k can be obtained by training.

Assumption 2. Signal x∗ and observation noise ε are sampled from the following set:

(x∗, ε) ∈ X̄ (B,B, s, σ) ,
{

(x∗, ε)
∣∣∣|x∗i | ≤ B, ∀i, ‖x∗‖1 ≥ B, ‖x∗‖0 ≤ s, ‖ε‖1 ≤ σ}. (16)

6After xk settles on a support, i.e. as k large enough such that support(xk) is fixed, even with small λ,
ISTA reduces to a linear iteration, which has a linear convergence rate [22].

7This point was studied in [23, 24] with classical compressive sensing settings, while our learning settings
can learn a good path of parameters without a complicated thresholding rule or any manual tuning.
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Theorem 3 (Convergence of LISTA-CPSS). Given {W k, θk}∞k=0 and x0 = 0, let {xk}∞k=1 be
generated by (13). With the same assumption and parameters as in Theorem 2, the approximation
error can be bounded for all (x∗, ε) ∈ X (B, s, σ):

‖xk(x∗, ε)− x∗‖2 ≤ sB exp
(
−
k−1∑
t=0

ctss

)
+ Cssσ, ∀k = 1, 2, · · · , (17)

where ckss ≥ c for all k and Css ≤ C.

If Assumption 2 holds, s is small enough, and B ≥ 2Cσ (SNR is not too small), then there exists
another sequence of parameters {W̃ k, θ̃k} that yields the following improved error bound: for all
(x∗, ε) ∈ X̄ (B,B, s, σ),

‖xk(x∗, ε)− x∗‖2 ≤ sB exp
(
−
k−1∑
t=0

c̃tss

)
+ C̃ssσ, ∀k = 1, 2, · · · , (18)

where c̃kss ≥ c for all k, c̃kss > c for large enough k, and C̃ss < C.

The bound in (17) ensures that, with the same assumptions and parameters, LISTA-CPSS is at least no
worse than LISTA-CP. The bound in (18) shows that, under stronger assumptions, LISTA-CPSS can
be strictly better than LISTA-CP in both folds: c̃kss > c is the better convergence rate of LISTA-CPSS;
C̃ss < C means that the LISTA-CPSS can achieve smaller approximation error than the minimum
error that LISTA can achieve.

4 Numerical Results
For all the models reported in this section, including the baseline LISTA and LAMP models , we
adopt a stage-wise training strategy with learning rate decaying to stabilize the training and to get
better performance, which is discussed in the supplementary.

4.1 Simulation Experiments
Experiments Setting. We choose m = 250, n = 500. We sample the entries of A i.i.d. from the
standard Gaussian distribution, Aij ∼ N(0, 1/m) and then normalize its columns to have the unit
`2 norm. We fix a matrix A in each setting where different networks are compared. To generate
sparse vectors x∗, we decide each of its entry to be non-zero following the Bernoulli distribution with
pb = 0.1. The values of the non-zero entries are sampled from the standard Gaussian distribution. A
test set of 1000 samples generated in the above manner is fixed for all tests in our simulations.

All the networks have K = 16 layers. In LISTA models with support selection, we add p% of entries
into support and maximally select pmax% in each layer. We manually tune the value of p and pmax

for the best final performance. With pb = 0.1 and K = 16, we choose p = 1.2 for all models in
simulation experiments and pmax = 12 for LISTA-SS but pmax = 13 for LISTA-CPSS. The recovery
performance is evaluated by NMSE (in dB):

NMSE(x̂, x∗) = 10 log10

(
E‖x̂− x∗‖2

E‖x∗‖2

)
,

where x∗ is the ground truth and x̂ is the estimate obtained by the recovery algorithms (ISTA, FISTA,
LISTA, etc.).

Validation of Theorem 1. In Fig 2, we report two values, ‖W k
2 − (I −W k

1 A)‖2 and θk, obtained
by the baseline LISTA model (4) trained under the noiseless setting. The plot clearly demonstrates
that W k

2 → I −W k
1 A, and θk → 0, as k →∞. Theorem 1 is directly validated.

Validation of Theorem 2. We report the test-set NMSE of LISTA-CP (10) in Fig. 3. Although (10)
fixes the structure between W k

1 and W k
2 , the final performance remains the same with the baseline

LISTA (4), and outperforms AMP, in both noiseless and noisy cases. Moreover, the output of interior
layers in LISTA-CP are even better than the baseline LISTA. In the noiseless case, NMSE converges
exponentially to 0; in the noisy case, NMSE converges to a stationary level related with the noise-level.
This supports Theorem 2: there indeed exist a sequence of parameters {(W k, θk)}K−1

k=0 leading to
linear convergence for LISTA-CP, and they can be obtained by data-driven learning.
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Figure 2: Validation of Theorem 1.
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Figure 3: Validation of Theorem 2.
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Figure 4: Validating Discussion after Theorem 2 (SNR =∞).

Validation of Discussion after
Theorem 2. In Fig 4, We com-
pare LISTA-CP and ISTA with
different λs (see the LASSO
problem (2)) as well as an adap-
tive threshold rule similar to one
in [23], which is described in the
supplementary. As we have dis-
cussed after Theorem 2, LASSO
has an inherent tradeoff based
on the choice of λ. A smaller
λ leads to a more accurate solu-
tion but slower convergence. The
adaptive thresholding rule fixes
this issue: it uses large λk for
small k, and gradually reduces it as k increases to improve the accuracy [23]. Except for adaptive
thresholds {θk}k (θk corresponds to λk in LASSO), LISTA-CP has adaptive weights {W k}k, which
further greatly accelerate the convergence. Note that we only ran ISTA and FISTA for 16 iterations,
just enough and fair to compare them with the learned models. The number of iterations is so small
that the difference between ISTA and FISTA is not quite observable.

Validation of Theorem 3. We compare the recovery NMSEs of LISTA-CP (10) and LISTA-CPSS
(13) in Fig. 5. The result of the noiseless case (Fig. 5(a)) shows that the recovery error of LISTA-SS
converges to 0 at a faster rate than that of LISTA-CP. The difference is significant with the number of
layers k ≥ 10, which supports our theoretical result: “c̃kss > c as k large enough” in Theorem 3. The
result of the noisy case (Fig. 5(b)) shows that LISTA-CPSS has better recovery error than LISTA-CP.
This point supports C̃ss < C in Theorem 3. Notably, LISTA-CPSS also outperforms LAMP [16],
when k > 10 in the noiseless case, and even earlier as SNR becomes lower.

Performance with Ill-Conditioned Matrix. We train LISTA, LAMP, LISTA-CPSS with ill-
conditioned matrices A of condition numbers κ = 5, 30, 50. As is shown in Fig. 6, as κ increases,
the performance of LISTA remains stable while LAMP becomes worse, and eventually inferior to
LISTA when κ = 50. Although our LISTA-CPSS also suffers from ill-conditioning, its performance
always stays much better than LISTA and LAMP.
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Figure 5: Validation of Theorem 3.
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Figure 6: Performance in ill-conditioned situations (SNR =∞).

4.2 Natural Image Compressive Sensing

Experiments Setting. We perform a compressive sensing (CS) experiment on natural images
(patches). We divide the BSD500 [25] set into a training set of 400 images, a validation set of
50 images, and a test set of 50 images. For training, we extract 10,000 patches f ∈ R16×16 at
random positions of each image, with all means removed. We then learn a dictionary D ∈ R256×512

from them, using a block proximal gradient method [26]. For each testing image, we divide it into
non-overlapping 16× 16 patches. A Gaussian sensing matrices Φ ∈ Rm×256 is created in the same
manner as in Sec. 4.1, where m

256 is the CS ratio.

Since f is typically not exactly sparse under the dictionary D, Assumptions 1 and 2 no longer strictly
hold. The primary goal of this experiment is thus to show that our proposed techniques remain robust
and practically useful in non-ideal conditions, rather than beating all CS state-of-the-arts.

Network Extension. In the real data case, we have no ground-truth sparse code available as the
regression target for the loss function (5). In order to bypass pre-computing sparse codes f over D
on the training set, we are inspired by [11]: first using layer-wise pre-training with a reconstruction
loss w.r.t. dictionary D plus an l1 loss, shown in (19), where k is the layer index and Θk denotes all
parameters in the k-th and previous layers; then appending another learnable fully-connected layer
(initialized by D) to LISTA-CPSS and perform an end-to-end training with the cost function (20).

Lk(Θk) =

N∑
i=1

‖fi −D · xki (Θk)‖22 + λ‖xki (Θk)‖1 (19)

L(Θ,WD) =

N∑
i=1

‖fi −WD · xKi (Θ)‖22 + λ‖xKi (Θ)‖1 (20)
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Table 1: The Average PSRN (dB) for Set 11 test images with CS ratio ranging from 0.2 to 0.6

Algorithm 20% 30% 40% 50% 60%

TVAL3 25.37 28.39 29.76 31.51 33.16
Recon-Net 27.18 29.11 30.49 31.39 32.44

LIHT 25.83 27.83 29.93 31.73 34.00
LISTA 28.17 30.43 32.75 34.26 35.99

LISTA-CPSS 28.25 30.54 32.87 34.60 36.39

Results. The results are reported in Table 1. We build CS models at the sample rates of
20%, 30%, 40%, 50%, 60% and test on the standard Set 11 images as in [27]. We compare our
results with three baselines: the classical iterative CS solver, TVAL3 [28]; the “black-box” deep
learning CS solver, Recon-Net [27];a l0-based network unfolded from IHT algorithm [15], noted as
LIHT; and the baseline LISTA network, in terms of PSNR (dB)8. We build 16-layer LIHT, LISTA
and LISTA-CPSS networks and set λ = 0.2. For LISTA-CPSS, we set p% = 0.4% more entries
into the support in each layer for support selection. We also select support w.r.t. a percentage of the
largest magnitudes within the whole batch rather than within a single sample as we do in theorems
and simulated experiments, which we emprically find is beneficial to the recovery performance. Table
1 confirms LISTA-CPSS as the best performer among all. The advantage of LISTA-CPSS and LISTA
over Recon-Net also endorses the incorporation of the unrolled sparse solver structure into deep
networks.

5 Conclusions
In this paper, we have introduced a partial weight coupling structure to LISTA, which reduces the
number of trainable parameters but does not hurt the performance. With this structure, unfolded ISTA
can attain a linear convergence rate. We have further proposed support selection, which improves
the convergence rate both theoretically and empirically. Our theories are endorsed by extensive
simulations and a real-data experiment. We believe that the methodology in this paper can be
extended to analyzing and enhancing other unfolded iterative algorithms.
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Theoretical Linear Convergence of Unfolded ISTA and Its
Practical Weights and Thresholds (Supplementary Material)

Some notation For any n-dimensional vector x ∈ <n, subscript xS means the part of x that is
supported on the index set S:

xS , [xi1 , xi2 , · · · , xi|S| ]
T , i1, · · · , i|S| ∈ S, i1 ≤ i2 ≤ · · · ≤ i|S|,

where |S| is the size of set S. For any matrix W ∈ <m×n,

W (S, S) ,

 W (i1, i1),W (i1, i2), · · · ,W (i1, i|S|)
W (i2, i1),W (i2, i2), · · · ,W (i2, i|S|)

· · ·
W (i|S|, i1),W (i|S|, i2), · · · ,W (i|S|, i|S|)

 , i1, · · · , i|S| ∈ S, i1 ≤ i2 ≤ · · · ≤ i|S|,

W (S, :) ,

 W (i1, 1),W (i1, 2), · · · ,W (i1, n)
W (i2, 1),W (i2, 2), · · · ,W (i2, n)

· · ·
W (i|S|, 1),W (i|S|, 2), · · · ,W (i|S|, n)

 , i1, · · · , i|S| ∈ S, i1 ≤ i2 ≤ · · · ≤ i|S|,

W (:, S) ,

W (1, i1),W (1, i2), · · · ,W (1, i|S|)
W (2, i1),W (2, i2), · · · ,W (2, i|S|)

· · ·
W (n, i1),W (n, i2), · · · ,W (n, i|S|)

 , i1, · · · , i|S| ∈ S, i1 ≤ i2 ≤ · · · ≤ i|S|.

A Proof of Theorem 1

Proof. By LISTA model (4), the output of the k-th layer xk depends on parameters, observed
signal b and initial point x0: xk

(
{W τ

1 ,W
τ
2 , θ

τ}k−1
τ=0, b, x

0
)

. Since we assume (x∗, ε) ∈ X (B, s, 0),

the noise ε = 0. Moreover, A is fixed and x0 is taken as 0. Thus, xk therefore depends on
parameters and x∗: xk

(
{W τ

1 ,W
τ
2 , θ

τ}k−1
τ=0, x

∗
)

In this proof, for simplicity, we use xk denote

xk
(
{W τ

1 ,W
τ
2 , θ

τ}k−1
τ=0, x

∗
)

.

Step 1 Firstly, we prove θk → 0 as k →∞.

We define a subset of X (B, s, 0) given 0 < B̃ ≤ B:

X̃ (B, B̃, s, 0) ,
{

(x∗, ε)
∣∣∣B̃ ≤ |x∗i | ≤ B, ∀i, ‖x∗‖0 ≤ s, ε = 0

}
⊂ X (B, s, 0).

Since xk → x∗ uniformly for all (x∗, 0) ∈ X (B, s, 0), so does for all (x∗, 0) ∈ X̃ (B,B/10, s, 0).
Then there exists a uniform K1 > 0 for all (x∗, 0) ∈ X̃ (B,B/10, s, 0), such that |xki − x∗i | < B/10
for all i = 1, 2, · · · , n and k ≥ K1, which implies

sign(xk) = sign(x∗), ∀k ≥ K1. (21)

The relationship between xk and xk+1 is

xk+1 = ηθk
(
W k

2 x
k +W k

1 b
)
.

Let S = support(x∗). Then, (21) implies that, for any k ≥ K1 and (x∗, 0) ∈ X̃ (B,B/10, s, 0), we
have

xk+1
S = ηθk

(
W k

2 (S, S)xkS +W k
1 (S, :)b

)
.

The fact (21) means xk+1
i 6= 0,∀i ∈ S. By the definition ηθ(x) = sign(x) max(0, |x| − θ), as long

as ηθ(x)i 6= 0, we have ηθ(x)i = xi − θ sign(xi). Thus,

xk+1
S = W k

2 (S, S)xkS +W k
1 (S, :)b− θk sign(x∗S).

1



Furthermore, the uniform convergence of xk tells us, for any ε > 0 and (x∗, 0) ∈ X̃ (B,B/10, s, 0),
there exists a large enough constant K2 > 0 and ξ1, ξ2 ∈ <|S| such that xkS = x∗S + ξ1, x

k+1
S =

x∗S + ξ2 and ‖ξ1‖2 ≤ ε, ‖ξ2‖2 ≤ ε. Then

x∗S + ξ2 = W k
2 (S, S)(x∗S + ξ1) +W k

1 (S, :)b− θk sign(x∗S).

Since the noise is supposed to be zero ε = 0, b = Ax∗. Substituting b with Ax∗ in the above equality,
we obtain

x∗S = W k
2 (S, S)x∗S +W k

1 (S, :)A(:, S)x∗S − θk sign(x∗S) + ξ,

where ‖ξ‖2 = ‖W k
2 (S, S)ξ1 − ξ2‖2 ≤ (1 +BW )ε, BW is defined in Theorem 1. Equivalently,(

I −W k
2 (S, S)−W k

1 A(S, S)
)
x∗S = θk sign(x∗S)− ξ. (22)

For any (x∗, 0) ∈ X̃ (B/2, B/10, s, 0), (2x∗, 0) ∈ X̃ (B,B/10, s, 0) holds. Thus, the above argu-
ment holds for all 2x∗ if (x∗, 0) ∈ X̃ (B/2, B/10, s, 0). Substituting x∗ with 2x∗ in (22), we get(

I −W k
2 (S, S)−W k

1 A(S, S)
)

2x∗S = θk sign(2x∗S)− ξ′ = θk sign(x∗S)− ξ′, (23)

where ‖ξ′‖2 ≤ (1 +BW )ε. Taking the difference between (22) and (23), we have(
I −W k

2 (S, S)−W k
1 A(S, S)

)
x∗S = −ξ′ + ξ. (24)

Equations (22) and (24) imply
θk sign(x∗S)− ξ = −ξ′ + ξ.

Then θk can be bounded with

θk ≤ 3(1 +BW )√
|S|

ε, ∀k ≥ max(K1,K2). (25)

The above conclusion holds for all |S| ≥ 1. Moreover, as a threshold in ηθ, θk ≥ 0. Thus,
0 ≤ θk ≤ 3(1 +BW )ε for any ε > 0 as long as k large enough. In another word, θk → 0 as k →∞.

Step 2 We prove that I −W k
2 −W k

1 A→ 0 as k →∞.

LISTA model (4) and b = Ax∗ gives

xk+1
S =ηθk

(
W k

2 (S, :)xk +W k
1 (S, :)b

)
=ηθk

(
W k

2 (S, :)xk +W k
1 (S, :)A(:, S)x∗S

)
∈W k

2 (S, :)xk +W k
1 (S, :)A(:, S)x∗S − θk∂`1(xk+1

S ),

where ∂`1(x) is the sub-gradient of ‖x‖1. It is a set defined component-wisely:

∂`1(x)i =

{
{sign(xi)} if xi 6= 0,

[−1, 1] if xi = 0.
(26)

The uniform convergence of xk implies, for any ε > 0 and (x∗, 0) ∈ X (B, s, 0), there exists a
large enough constant K3 > 0 and ξ1, ξ2 ∈ <n such that xk = x∗ + ξ3, x

k+1 = x∗ + ξ4 and
‖ξ3‖2 ≤ ε, ‖ξ4‖2 ≤ ε. Thus,

x∗S + (ξ4)S ∈W k
2 (S, S)x∗S +W k

2 (S, :)ξ3 +W k
1 A(S, S)x∗S − θk∂`1(xk+1

S )(
I −W k

2 (S, S)−W k
1 A(S, S)

)
x∗S ∈W k

2 (S, :)ξ3 − (ξ4)S − θk∂`1(xk+1
S )

By the definition (26) of ∂`1, every element in ∂`1(x),∀x ∈ < has a magnitude less than or equal to
1. Thus, for any ξ ∈ `1(xk+1

S ), we have ‖ξ‖2 ≤
√
|S|, which implies∥∥∥(I −W k

2 (S, S)−W k
1 A(S, S)

)
x∗S

∥∥∥
2
≤ ‖W k

2 ‖2ε+ ε+ θk
√
|S|.
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Combined with (25), we obtain the following inequality for all k ≥ max(K1,K2,K3):∥∥∥(I −W k
2 (S, S)−W k

1 A(S, S)
)
x∗S

∥∥∥
2
≤ ‖W k

2 ‖2ε+ ε+ 3(1 +BW )ε = 4(1 +BW )ε.

The above inequality holds for all (x∗, 0) ∈ X (B, s, 0), which implies, for all k ≥
max(K1,K2,K3),

σmax

(
I −W k

2 (S, S)−W k
1 A(S, S)

)
= sup

support(x∗)=S
‖x∗i ‖2=B

{‖(I −W k
2 (S, S)−W k

1 A(S, S))x∗S‖2
B

}

≤ sup
(x∗,0)∈X (B,s,0)

{‖(I −W k
2 (S, S)−W k

1 A(S, S))x∗S‖2
B

}
≤4(1 +BW )

B
ε.

Since s ≥ 2, I − W k
2 (S, S) − W k

1 A(S, S) → 0 uniformly for all S with 2 ≤ |S| ≤ s. Then,
I −W k

2 −W k
1 A→ 0 as k →∞.

B Proof of Theorem 2

Before proving Theorem 2, we introduce some definitions and a lemma.
Definition 1. Mutual coherence µ of A ∈ <m×n (each column of A is normalized) is defined as:

µ(A) = max
i 6=j

1≤i,j≤n

|(Ai)>Aj |, (27)

where Ai refers to the ith column of matrix A.

Generalized mutual coherence µ̃ of A ∈ <m×n (each column of A is normalized) is defined as:

µ̃(A) = inf
W∈<m×n

(Wi)
TAi=1,1≤i≤n

{
max
i 6=j

1≤i,j≤n

|(Wi)
>Aj |

}
. (28)

The following lemma tells us the generalized mutual coherence is attached at some W̃ ∈ <m×n.

Lemma 1. There exists a matrix W̃ ∈ <m×n that attaches the infimum given in (28):

(W̃i)
TAi = 1, 1 ≤ i ≤ n, max

i6=j
1≤i,j≤n

|(W̃i)
>Aj | = µ̃

Proof. Optimization problem given in (28) is a linear programming because it minimizing a piece-
wise linear function with linear constraints. Since each column of A is normalized, there is at least
one matrix in the feasible set:

A ∈ {W ∈ <m×n : (Wi)
TAi = 1, 1 ≤ i ≤ n}.

In another word, optimization problem (28) is feasible. Moreover, by the definition of infimum bound
(28), we have

0 ≤ µ̃(A) ≤ max
i6=j

1≤i,j≤n

|(Ai)>Aj | = µ(A).

Thus, µ̃ is bounded. According to Corollary 2.3 in [29], a feasible and bounded linear programming
problem has an optimal solution.

Based on Lemma 1, we define a set of “good” weights which W ks are chosen from:
Definition 2. Given A ∈ <m×n, a weight matrix is “good” if it belongs to

XW (A) = arg min
W∈<m×n

{
max

1≤i,j≤n
|Wi,j | : (Wi)

TAi = 1, 1 ≤ i ≤ n, max
i6=j

1≤i,j≤n

|(Wi)
>Aj | = µ̃

}
. (29)

Let CW = max1≤i,j≤n |Wi,j |, if W ∈ XW (A).
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With definitions (28) and (29), we propose a choice of parameters:

W k ∈ XW (A), θk = sup
(x∗,ε)∈X (B,s,σ)

{µ̃‖xk(x∗, ε)− x∗‖1}+ CWσ, (30)

which are uniform for all (x∗, ε) ∈ X (B, s, σ). In the following proof line, we prove that (30) leads
to the conclusion (14) in Theorem 2.

Proof of Theorem 2

Proof. In this proof, we use the notation xk to replace xk(x∗, ε) for simplicity.

Step 1: no false positives. Firstly, we take (x∗, ε) ∈ X (B, s, σ). Let S = support(x∗). We want
to prove by induction that, as long as (30) holds, xki = 0,∀i /∈ S, ∀k (no false positives). When
k = 0, it is satisfied since x0 = 0. Fixing k, and assuming xki = 0,∀i /∈ S, we have

xk+1
i =ηθk

(
xki −

∑
j∈S

(W k
i )T (Axk − b)

)
=ηθk

(
−
∑
j∈S

(W k
i )TAj(x

k
j − x∗j ) + (W k

i )T ε
)
, ∀i /∈ S.

Since θk = µ̃ supx∗,ε{‖xk − x∗‖1}+ CWσ and W k ∈ XW (A),

θk ≥ µ̃‖xk − x∗‖1 + CW ‖ε‖1 ≥
∣∣∣−∑

j∈S
(W k

i )TAj(x
k
j − x∗j ) + (W k

i )T ε
∣∣∣,∀i /∈ S,

which implies xk+1
i = 0,∀i /∈ S by the definition of ηθk . By induction, we have

xki = 0,∀i /∈ S, ∀k. (31)

In another word, threshold rule in (30) ensures no false positives9 for all xk, k = 1, 2, · · ·

Step 2: error bound for one (x∗, ε). Next, let’s consider the components on S. For all i ∈ S,

xk+1
i = ηθk

(
xki − (W k

i )TAS(xkS − x∗S) + (W k
i )T ε

)
∈ xki − (W k

i )TAS(xkS − x∗S) + (W k
i )T ε− θk∂`1(xk+1

i ),

where ∂`1(x) is defined in (26). Since (W k
i )TAi = 1, we have

xki − (W k
i )TAS(xkS − x∗S) =xki −

∑
j∈S,j 6=i

(W k
i )TAj(x

k
j − x∗j )− (xki − x∗i )

=x∗i −
∑

j∈S,j 6=i

(W k
i )TAj(x

k
j − x∗j ).

Then,

xk+1
i − x∗i ∈ −

∑
j∈S,j 6=i

(W k
i )TAj(x

k
j − x∗j ) + (W k

i )T ε− θk∂`1(xk+1
i ), ∀i ∈ S.

By the definition (26) of ∂`1, every element in ∂`1(x),∀x ∈ < has a magnitude less than or equal to
1. Thus, for all i ∈ S,

|xk+1
i − x∗i | ≤

∑
j∈S,j 6=i

∣∣∣(W k
i )TAj

∣∣∣|xkj − x∗j |+ θk + |(W k
i )T ε|

≤µ̃
∑

j∈S,j 6=i

|xkj − x∗j |+ θk + CW ‖ε‖1

9In practice, if we obtain θk by training, but not (30), the learned θk may not guarantee no false positives for
all layers. However, the magnitudes on the false positives are actually small compared to those on true positives.
Our proof sketch are qualitatively describing the learning-based ISTA.
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Equation (31) implies ‖xk − x∗‖1 = ‖xkS − x∗S‖1 for all k. Then

‖xk+1 − x∗‖1 =
∑
i∈S
|xk+1
i − x∗i | ≤

∑
i∈S

(
µ̃
∑

j∈S,j 6=i

|xkj − x∗j |+ θk + CWσ
)

=µ̃(|S| − 1)
∑
i∈S
|xki − x∗i |+ θk|S|+ |S|CWσ

≤µ̃(|S| − 1)‖xk − x∗‖1 + θk|S|+ |S|CWσ

Step 3: error bound for the whole data set. Finally, we take supremum over (x∗, ε) ∈
X (B, x, σ), by |S| ≤ s,

sup
x∗,ε
{‖xk+1 − x∗‖1} ≤ µ̃(s− 1) sup

x∗,ε
{‖xk − x∗‖1}+ sθk + sCWσ.

By θk = supx∗,ε{µ̃‖xk − x∗‖1}+ CWσ, we have

sup
x∗,ε
{‖xk+1 − x∗‖1} ≤ (2µ̃s− µ̃) sup

x∗,ε
{‖xk − x∗‖1}+ 2sCWσ.

By induction, with c = − log(2µ̃s− µ̃), C = 2sCW

1+µ̃−2µ̃s , we obtain

sup
x∗,ε
{‖xk+1 − x∗‖1} ≤(2µ̃s− µ̃)k+1 sup

x∗,ε
{‖x0 − x∗‖1}+ 2sCWσ

( k+1∑
τ=0

(2µ̃s− µ̃)τ
)

≤(2µ̃s− µ̃)ksB + Cσ = sB exp(−ck) + Cσ.

Since ‖x‖2 ≤ ‖x‖1 for any x ∈ <n , we can get the upper bound for `2 norm:

sup
x∗,ε
{‖xk+1 − x∗‖2} ≤ sup

x∗,ε
{‖xk+1 − x∗‖1} ≤ sB exp(−ck) + Cσ.

As long as s < (1 + 1/µ̃)/2, c = − log(2µ̃s− µ̃) > 0, then the error bound (14) holds uniformly
for all (x∗, ε) ∈ X (B, s, σ).

C Proof of Theorem 3

Proof. In this proof, we use the notation xk to replace xk(x∗, ε) for simplicity.

Step 1: proving (17). Firstly, we assume Assumption 1 holds. Take (x∗, ε) ∈ X (B, s, σ). Let
S = support(x∗). By the definition of selecting-support operator ηss

pk

θk
, using the same argument

with the proof of Theorem 2, we have LISTA-CPSS also satisfies xki = 0,∀i /∈ S, ∀k (no false
positive) with the same parameters as (30).

For all i ∈ S, by the definition of ηss
pk

θk
, there exists ξk ∈ <n such that

xk+1
i =ηss

pk

θk

(
xki − (W k

i )TAS(xkS − x∗S) + (W k
i )T ε

)
=xki − (W k

i )TAS(xkS − x∗S) + (W k
i )T ε− θkξki ,

where

ξki


= 0 if i /∈ S
∈ [−1, 1] if i ∈ S, xk+1

i = 0

= sign(xk+1
i ) if i ∈ S, xk+1

i 6= 0, i /∈ Spk(xk+1),

= 0 if i ∈ S, xk+1
i 6= 0, i ∈ Spk(xk+1).

The set Sp
k

is defined in (12). Let

Sk(x∗, ε) = {i|i ∈ S, xk+1
i 6= 0, i ∈ Sp

k

(xk+1)},

where Sk depends on x∗ and ε because xk+1 depends on x∗ and ε. Then, using the same argument
with that of LISTA-CP (Theorem 2), we have

‖xk+1
S − x∗S‖1 ≤ µ̃(|S| − 1)‖xkS − x∗S‖1 + θk

(
|S| − |Sk(x∗, ε)|

)
+ |S|CW ‖ε‖1.
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Since xki = 0,∀i /∈ S, ‖xk − x∗‖2 = ‖xkS − x∗S‖2 for all k. Taking supremum over (x∗, ε) ∈
X (B, s, σ), we have

sup
x∗,ε
‖xk+1 − x∗‖1 ≤ (µ̃s− 1) sup

x∗,ε
‖xk − x∗‖1 + θk(s− inf

x∗,ε
|Sk(x∗, ε)|) + sCWσ.

By θk = supx∗,ε{µ̃‖xk − x∗‖1}+ CWσ, we have

sup
x∗,ε
{‖xk+1 − x∗‖1} ≤

(
2µ̃s− µ̃− µ̃ inf

x∗,ε
|Sk(x∗, ε)|

)
sup
x∗,ε
{‖xk − x∗‖1}+ 2sCWσ.

Let
ckss =− log

(
2µ̃s− µ̃− µ̃ inf

x∗,ε
|Sk(x∗, ε)|

)
Css =2sCW

∞∑
k=0

k∏
t=0

exp(−ctss)).

Then,

sup
x∗,ε
{‖xk − x∗‖1}

≤
( k−1∏
t=0

exp(−ctss)
)

sup
x∗,ε
{‖x0 − x∗‖1}+ 2sCW

( 0∏
t=0

exp(−ctss)) + · · ·+
k−1∏
t=0

exp(−ctss))
)
σ

≤sB
( k−1∏
t=0

exp(−ctss)
)

+ Cssσ ≤ B exp
(
−
k−1∑
t=0

ctss

)
+ Cssσ.

With ‖x‖2 ≤ ‖x‖1, we have

sup
x∗,ε
{‖xk − x∗‖2} ≤ sup

x∗,ε
{‖xk − x∗‖1} ≤ sB

( k−1∏
t=0

exp(−ctss)
)

+ Cssσ.

Since |Sk| means the number of elements in Sk, |Sk| ≥ 0. Thus, ckss ≥ c for all k. Consequently,

Css ≤ 2sCW

( ∞∑
k=0

exp(−ck))
)

= 2sCW

( ∞∑
k=0

(2µ̃s− µ̃)k
)

=
2sCW

1 + µ̃− 2µ̃s
= C.

Step 2: proving (18). Secondly, we assume Assumption 2 holds. Take (x∗, ε) ∈ X̄ (B,B, s, σ).
The parameters are taken as

W k ∈ XW (A), θk = sup
(x∗,ε)∈X̄ (B,B,s,σ)

{µ̃‖xk(x∗, ε)− x∗‖1}+ CWσ.

With the same argument as before, we get

sup
(x∗,ε)∈X̄ (B,B,s,σ)

{‖xk − x∗‖2} ≤ sB exp
(
−
k−1∑
t=0

c̃tss

)
+ C̃ssσ,

where
c̃kss =− log

(
2µ̃s− µ̃− µ̃ inf

(x∗,ε)∈X̄ (B,B,s,σ)
|Sk(x∗, ε)|

)
≥ c

C̃ss =2sCW

( ∞∑
k=0

k∏
t=0

exp(−c̃tss))
)
≤ C.

Now we consider Sk in a more precise way. The definition of Sk implies

|Sk(x∗, ε)| = min
(
pk,# of non-zero elements of xk+1

)
. (32)

By Assumption 2, it holds that ‖x∗‖1 ≥ B ≥ 2Cσ. Consequently, if k > 1/c(log(sB/Cσ)), then

sB exp(−ck) + Cσ < 2Cσ ≤ ‖x∗‖1,
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which implies

‖xk+1 − x∗‖1 ≤ sB(

k∏
t=0

exp(−c̃tss)) + C̃ssσ ≤ sB exp(−ck) + Cσ < ‖x∗‖1.

Then # of non-zero elements of xk+1 ≥ 1. (Otherwise, ‖xk+1 − x∗‖1 = ‖0− x∗‖1, which contra-
dicts.) Moreover, pk = min(pk, s) for some constant p > 0. Thus, as long as k ≥ 1/p, we have
pk ≥ 1. By (32), we obtain

|Sk(x∗, ε)| > 0, ∀k > max
(1

p
,

1

c
log
( sB
Cσ

))
, ∀(x∗, ε) ∈ X̄ (B,B, s, σ).

Then, we have c̃kss > c for large enough k, consequently, C̃ss < C.

D The adaptive threshold rule used to produce Fig. 4

Algorithm 1: A thresholding rule for LASSO (Similar to that in [23])

Input :Maximum iteration K, initial λ0, ε0.
Initialization :Let x0 = 0, λ1 = λ0, ε1 = ε0.

1 for k = 1, 2, · · · ,K do
2 Conduct ISTA: xk = ηλk/L

(
xk−1 − 1

LA
T (Axk−1 − b)

)
.

3 if ‖xk − xk−1‖ < εk then
4 Let λk+1 ← 0.5λk, εk+1 ← 0.5εk.
5 else
6 Let λk+1 ← λk, εk+1 ← εk.
7 end
8 end

Output: xK

We take λ0 = 0.2, ε0 = 0.05 in our experiments.

E Training Strategy

In this section we have a detailed discussion on the stage-wise training strategy in empirical exper-
iments. Denote Θ = {(W k

1 ,W
k
2 , θ

k)}K−1
k=0 as all the weights in the network. Note that (W k

1 ,W
k
2 )

can be coupled as in (7). Denote Θτ = {(W k
1 ,W

k
2 , θ

k)}τk=0 all the weights in the τ -th and all the
previous layers. We assign a learning multiplier c(·), which is initialized as 1, to each weight in the
network. Define an initial learning rate α0 and two decayed learning rates α1, α2. In real training, we
have α1 = 0.2α0, α2 = 0.02α0. Our training strategy is described as below:

• Train the network layer by layer. Training in each layer consists of 3 stages.

• In layer τ , Θτ−1 is pre-trained. Initialize c(W τ
1 ), c(W τ

2 ), c(θτ ) = 1. The actual learning
rates of all weights in the following are multiplied by their learning multipliers.

– Train (W τ
1 ,W

τ
2 , θ

τ ) the initial learning rate α0.
– Train Θτ = Θτ−1 ∪ (W τ

1 ,W
τ
2 , θ

τ ) with the learning rates α1 and α2.

• Multiply a decaying rate γ (set to 0.3 in experiments) to each weight in Θτ .

• Proceed training to the next layer.

The layer-wise training is widely adopted in previous LISTA-type networks. We add the learning
rate decaying that is able to stabilize the training process. It will make the previous layers change
very slowly when the training proceeds to deeper layers because learning rates of first several layers
will exponentially decay and quickly go to near zero when the training process progresses to deeper
layers, which can prevent them varying too far from pre-trained positions. It works well especially

7



when the unfolding goes deep to K > 10. All models trained and reported in experiments section are
trained using the above strategy.

Remark While adopting the above stage-wise training strategy, we first finish a complete training
pass, calculate the intermediate results and final outputs, and then draw curves and evaluate the
performance based on these results, instead of logging how the best performance changes when the
training process goes deeper. This manner possibly accounts for the reason why some curves plotted
in Section 4.1 display some unexpected fluctuations.
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