

OVERVIEW

- We design a deep neural network to drastically improve LASSO speed and quality.
- Our network has fewer parameters and is easier to train.
- Our network achieves global linear convergence, better than sublinear and eventuallinear convergence of ISTA/FISTA.

UNFOLD ISTA TO NEURAL NETWORK

Problem: Recover a sparse vector x^* from its noisy measurements:

$$b = Ax^* + \varepsilon,$$

LASSO:

$$\underset{x}{\text{minimize}} \frac{1}{2} \|b - Ax\|_{2}^{2} + \lambda \|x\|_{1}$$

Iterative shrinkage thresholding algorithm (ISTA) or FPC:

$$x^{k+1} = \eta_{\lambda/L} \left(x^k + \frac{1}{L} A^T (b - A x^k) \right), \quad k = 0, 1, 2, \dots$$

where η_{θ} is soft-thresholding, λ and L are selected by hand or cross-validation. ISTA converges sublinearly and eventually-linearly to a LASSO solution, not x^* .

Neural network: unrolls ISTA to a feed-forward neural network, replace A, A^T in ISTA by free matrices, and truncates it to *K* iterations (known as Learned ISTA or LISTA [1]):

$$x^{k+1} = \eta_{\theta^k} (W_1^k b + W_2^k x^k), \quad k = 0, 1, \cdots, K - 1,$$

Inputs are x^0 and b. Output x^K is our recovery.

Training (deciding θ^k , W_1^k , W_2^k) For fixed A, we want to obtain parameters Θ^K = $\{(W_1^k, W_2^k, \theta^k)\}_{k=0}^{K-1}$ such that $x^{\bar{K}}$ is close to x^* (the ground truth) for input $b = Ax^* + \varepsilon$ for almost all x^* , ε following certain distribution. In another word, given the distributions of x^* and ε , we

$$\underset{\Theta}{\text{minimize}} \ \frac{1}{2} \mathbb{E}_{x^*,\varepsilon} \| x^K (\Theta^K, b, x^0) - x^* \|_2^2$$

Stochastic gradient descent (SGD) can be applied to solve the above minimization problem. The gradient of x^K on Θ^K can be obtained by the chain rule (back propagation).

Issues: largely many free parameters, training is slow

REFERENCES

K. Gregor and Y. LeCun, "Learning fast approximations of sparse coding," in *ICML*, 2010. [1] X. Chen, J. Liu, Z. Wang, and W. Yin, "Theoretical linear convergence of unfolded ista and its practical weights and thresholds," in NIPS, 2018.

LINKS

arXiv preprint:

Theoretical Linear Convergence of Unfolded ISTA and Its Practical Weights and Thresholds

Xiaohan Chen* (Texas A&M) Jialin Liu* (UCLA) Zhangyang Wang (Texas A&M) Wotao Yin (UCLA)

IMPROVE BY WEIGHT COUPLING (CP)

New idea: exploit certain dependencies among W_1^k, W_2^k, θ^k to simplify the network and improve the recovery result.

Theorem 1 (Necessary Condition) Suppose $K = \infty$ and there is no noise $\varepsilon = 0$. Let $\{x^k\}_{k=1}^{\infty}$ be generated by (LISTA). If $x^k(\Theta^k, b, x^0) \to x^*$ as $k \to \infty$ uniformly for all sparse x^* , then the parameters $\{W_1^k, W_2^k, \theta^k\}_{k=0}^{\infty}$ are not independent to each other but must satisfy

$$W_2^k - (I - W_1^k A) \to 0, \quad \theta^k -$$

Weight simplification: Couple $W_2^k = I - W_1^k A$ and simplify LISTA to:

$$x^{k+1} = \eta_{\theta^k} \Big(x^k + W_1^k (b - Ax^k) \Big), \quad k =$$

Now, only $\overline{\Theta}^K = \{W_1^k, \theta^k\}_{k=0}^{K-1}$ need to be trained, yet recovery is still fast.

Theorem 2 (LISTA-CP trainability) Suppose $K = \infty$ and let $\{x^k\}_{k=1}^{\infty}$ be generated by (*LISTA-CP*). There exists a sequence of parameters $\{W_1^k, \theta^k\}$ such that

 $\|x^k(\bar{\Theta}^k, b, x^0) - x^*\|_2 \le C_1 \exp(-ck) + C_2\sigma, \quad \forall k = 1, 2, \cdots,$

holds for all (x^*, ε) satisfying some assumptions (see [2]), where $c, C_1, C_2 > 0$ are constants that depend only on A and the distribution of x^* , and σ is the noise level.

If $\sigma = 0$ (noiseless case), the *k*th layer output x^k converges to x^* linearly:

 $||x^k - x^*||_2 \le C_1 e^{-ck}.$

IMPROVE BY SUPPORT SELECTION (SS)

Before applying soft thresholding in each layer, trust a percentages of largest entries as "true support" to bypass thresholding.

$$x^{k+1} = \eta_{ss} {}_{\theta^k}^{p^k} \left(x^k + W_1^k (b - Ax^k) \right), \quad k =$$

Theorem 3 (Convergence of LISTA-CPSS) Suppose $K = \infty$ and let $\{x^k\}_{k=1}^{\infty}$ be generated *by* (*LISTA-CPSS*). *There exists a sequence of parameters* $\{W_1^k, \theta^k\}$ *such that*

$$||x^k(\bar{\Theta}^k, b, x^0) - x^*||_2 \le C_1 \exp$$

$$\|x^*\|_2 \le C_1 \exp\left(-\right)$$

$$\sum_{t=0}^{n-1} \tilde{d}$$

holds for all (x^*, ε) satisfying some assumptions. The convergence rate is better: $\tilde{c}_{ss}^k > c$ for large enough k. The recovery error is better: $\tilde{C}_{ss} < C_2$.

NUMERICAL VALIDATION — SUPPORT SELECTION

Validation of support selection: LISTA with support selection (LISTA-SS) achieves linear convergence and better final performance. Coupled LISTA with support selection (LISTA-CPSS) yields the best performance.

(1)

 $\rightarrow 0$, as $k \rightarrow \infty$.

(LISTA-CP) $= 0, 1, \cdots, K - 1.$

 $= 0, 1, \cdots, K - 1.$

(LISTA-CPSS)

 $+\tilde{C}_{\rm ss}\sigma, \quad \forall k=1,2,\cdots,$

(dB)-20 NMSE

NUMERICAL VALIDATION

Data: fix $A \in \Re^{250 \times 500}$, $A_{ij} \sim N(0, 1)$. Columns of A are normalized. Sample x^* with 10% nonzeros, each from the normal distribution. All plots below used the same 1000samples.

Baseline LISTA vs ISTA:

gence and stabilize intermediate steps compared to LISTA.

Validation of coupled LISTA (\sigma=0): Coupled LISTA (LISTA-CP) achieves linear conver-

