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OVERVIEW

• We develop novel orthogonality regularizations on training deep CNNs, by borrowing
ideas and tools from sparse optimization.

• These plug-and-play regularizations can be conveniently incorporated into training
almost any CNN without extra hassle.

• The proposed regularizations can consistently improve the performances of baseline
deep networks on CIFAR-10/100, ImageNet and SVHN datasets, based on intensive
empirical experiments, as well as accelerate/stabilize the training curves.

• The proposed orthogonal regularizations outperform existing competitors.

PRELIMINARIES

Goal We aim to regularize the (overcomplete or undercomplete) CNN weights to be
“close” to orthogonal ones, for improving both training stability and final accuracy.

Notation The weight in one fully-connected layer is denoted asW ∈ Rm×n. For convo-
lutional layer C ∈ RS×H×C×M , we reshape C into W ′ ∈ Rm′×n′

where m′ = S ×H × C
and n′ =M to reduce it to the form of fully-connected layer.

Mutual Coherence The mutual coherence of a weight W is defined as

µW = max
i 6=j

|〈wi, wj〉|
||wi|| · ||wj ||

, (1)

where wi denotes the i-th column of W , i = 1, 2, ..., n. In order for W to have orthogonal
or near-orthogonal columns, µW should be as low as possible (zero if m ≥ n).

Restricted Isometry Property We rewrite the Restricted Isometry Property condition
of W as:

δW = sup
z∈Rn,z 6=0

∣∣∣∣ ||Wz||2

||z||2
− 1

∣∣∣∣ , (2)

where z is k-sparse. Note that δW reduces to the spectral norm of WTW − I , denoted as
σ(WTW − I), if we let k = n.

ORTHOGONALITY REGULARIZATION

Soft Orthogonality Regularization (SO) SO simply minimizes the distance from the
Gram matrix of W to the identity matrix:

(SO) λ||WTW − I||2F , (3)

Double Soft Orthogonality Regularization (DSO) DSO tries to regularize better when
W is overcomplete, by appending another term to (3).

(DSO) λ(||WTW − I||2F + ||WWT − I||2F ). (4)

Mutual Coherence Regularization (MC) We suppress µW to enforce orthogonality.
Assuming columns of W are normalized to unit vectors (what if not?), we propose the
following MC regularization based on (1):

(MC) λ||WTW − I||∞, (5)

Spectral Restricted Isometry Property Regularization (SRIP) We suppress σW to en-
force orthogonality, and propose the following SRIP regularization based on (2):

(SRIP) λ · σ(WTW − I). (6)

Power Methods for Efficient SRIP Implementation To avoid the computationally ex-
pensive EVD, we approximate the computation of spectral norm using the truncated
power iteration method. Starting with a randomly initialized v ∈ Rn, we iteratively
perform the following procedure a small number of times (2 times by default) :

u← (WTW − I)v, v ← (WTW − I)u, σ(WTW − I)← ||v||
||u||

. (7)
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EXPERIMENTAL RESULTS

• We perform our experiments on several most popular state-of-the-art models: ResNet(including several different variants), Wide
ResNet and ResNext. Datasets include CIFAR-10, CIFAR-100, SVHN and ImageNet.

• All results endorse the advantages of orthogonality regularization in improving the final accuracies: evident, stable, reproducible,
and sometimes with a large margin. SRIP is the best among all, and incurs negligible extra computational load.

EFFECTS ON THE TRAINING PROCESS
We carefully inspect the training curves (in term of validation accuracies w.r.t epoch numbers) of different methods on CIFAR-10

and CIFAR-100, with ResNet-110 curves shown here. Top: CIFAR-10; Bottom: CIFAR-100.


