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EXPERIMENTAL RESULTS

OVERVIEW

We develop novel orthogonality regularizations on training deep CNNs, by borrowing e We perform our experiments on several most popular state-of-the-art models: ResNet(including several different variants), Wide
ideas and tools from sparse optimization. ResNet and ResNext. Datasets include CIFAR-10, CIFAR-100, SVHN and ImageNet.

These plug-and-play regularizations can be conveniently incorporated into training e All results endorse the advantages of orthogonality regularization in improving the final accuracies: evident, stable, reproducible,
almost any CNN without extra hassle. and sometimes with a large margin. SRIP is the best among all, and incurs negligible extra computational load.

The proposed regularizations can consistently improve the performances of baseline
deep networks on CIFAR-10/100, ImageNet and SVHN datasets, based on intensive
empirical experiments, as well as accelerate/stabilize the training curves.

Table 1: Top-1 error rate comparison by ResNet 110, Wide ResNet 28-10 and ResNext 29-8-64 on
CIFAR-10 and CIFAR-100. * indicates results by us running the provided original model.

The proposed orthogonal regularizations outperform existing competitors. Model Regularizer CIFAR-10 CIFAR-100
ResNet-110 None 7.04% 25.42%
SO 0.78 25.01
DSO 7.04 25.83
PRELIMINARIES MC 6.97 75 43
Goal We aim to regularize the (overcomplete or undercomplete) CNN weights to be SRIP 6.55 25.14
“close” to orthogonal ones, for improving both training stability and final accuracy. Wide ResNet 28-10 None 4.16%* 20.50*
SO 3.76 18.56
Notation The weight in one fully-connected layer is denoted as W € R™*". For convo- DSO 3 86 18.21
lutional layer C' € RS*HXCxM e reshape C into W’ € R™ *" where m’ = S x H x C MC 3.68 18.90
and n’ = M to reduce it to the form of fully-connected layer. SRIP 3.60 18.19
Mutual Coherence The mutual coherence of a weight W is defined as ResNext 29-3-64 None 3.70% 18.53%
SO 3.38 17.59
AW = il - [Jw; || MC 3.65 17.62
SRIP 3.48 16.99

where w; denotes the i-th column of W, ¢ = 1,2, ..., n. In order for W to have orthogonal
or near-orthogonal columns, py should be as low as possible (zero if m > n).

Restricted Isometry Property We rewrite the Restricted Isometry Property condition Table 2: Top—S CITOr rate comparison on ImageNe’t

of W as: Model Regularizer ImageNet
S = sup [W=[® ) ResNet 34 None 0.84 Table 3: Top-1 error rate on
sz | 1217 OMDSM 9.68 SVHN using Wide ResNet 16-8.
where z is k-sparse. Note that dy reduces to the spectral norm of W' W — I, denoted as SRIP 8.32 -
oc(W'W —1I),if weletk = n. Pre-Resnet 34 None 9.79 Regularizer ImagelNet
None 1.63
OMDSM 9.45
SRIP 8.79 SRIP 1.56
ORTHOGONALITY REGULARIZATION :
ResNet 50 None 7.02
Soft Orthogonality Regularization (SO) SO simply minimizes the distance from the SRIP 6.87

Gram matrix of W to the identity matrix:

(SO) AW W —I|[. (3)

EFFECTS ON THE TRAINING PROCESS

We carefully inspect the training curves (in term of validation accuracies w.r.t epoch numbers) of different methods on CIFAR-10

Double Soft Orthogonality Regularization (DSO) DSO tries to regularize better when
W is overcomplete, by appending another term to (3). and CIFAR-100, with ResNet-110 curves shown here. Top: CIFAR-10; Bottom: CIFAR-100.

(DSO)  A(IWW —I|[z + [[WW™ — I|[5). (4)
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