EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets

Xiaohan Chen¹, Yu Cheng², Shuohang Wang², Zhe Gan², Zhangyang Wang¹, Jingjing Liu²

¹ The University of Texas at Austin

² Microsoft Corporation

Introduction

- Large-scale pre-trained language models achieve impressive empirical success at a price -- computational inefficiency due to
 - More complexed operations such as self-attention
 - Extreme overparameterization
 - E.g., BERT_{Large} has over <u>340M</u> parameters and T5 over <u>10B</u>
- Such complexity results in many drawbacks
 - Long inference time due to computational inefficiency
 - Data-hungry and resource-demanding pre-training is necessary
 - Most compression works focus on reducing inference time and resources

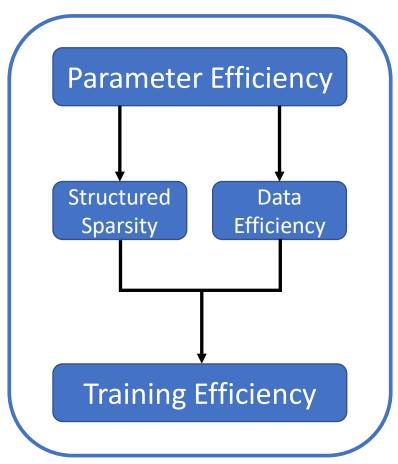
(Early-bird) Lottery Tickets

- Lottery Ticket Hypothesis (LTH) [1] suggests <u>the existence</u> of highly trainable sparse networks at random initialization **winning tickets**
- However, LTH has two drawbacks
 - The method for finding winning tickets (IMP) is computationally expensive
 - Only unstructured sparsity is achievable hard for acceleration
- Early-bird Lottery Tickets [2]
 - Structured sparsity
 - Emerge early during training
 - But with (acceptable) performance drops

[1] "The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks", Jonathan Frankle & Michael Carbin, ICLR 2019.[2] "Drawing Early-Bird Tickets: Toward More Efficient Training of Deep Networks", Haoran You et al., ICLR 2020.

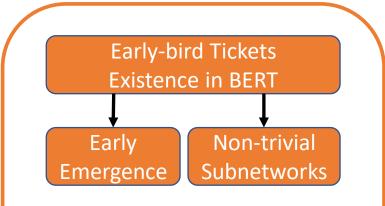
EarlyBERT – Early-bird Lottery Tickets in BERT

Efficiency Level



EarlyBERT

A general algorithmic framework for <u>efficient training</u> of BERT models Algorithm Level

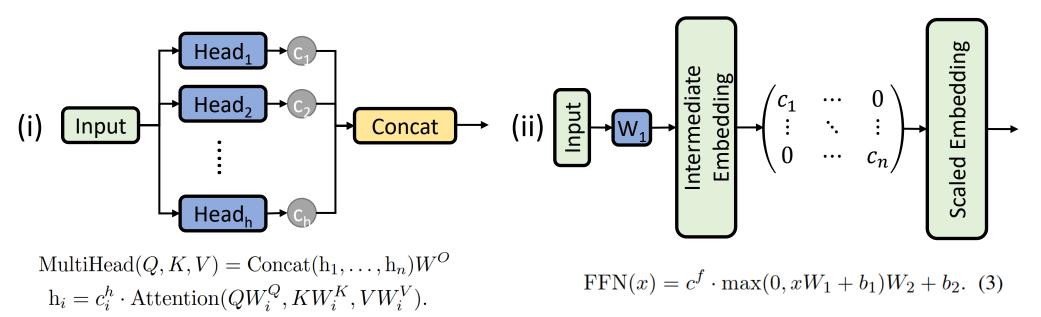


Detailed Ablation Studies

Work for Fine-tuning **AND** Pre-training

How to Search EarlyBERT Tickets?

- We follow the main idea of Network Slimming (NS) [3]
 - Batch normalization is not used in most NLP models
 - We manually add learnable coefficients to
 - i. Multi-head self-attention modules
 - ii. Intermediate neurons in the feed-forward networks (FFN)



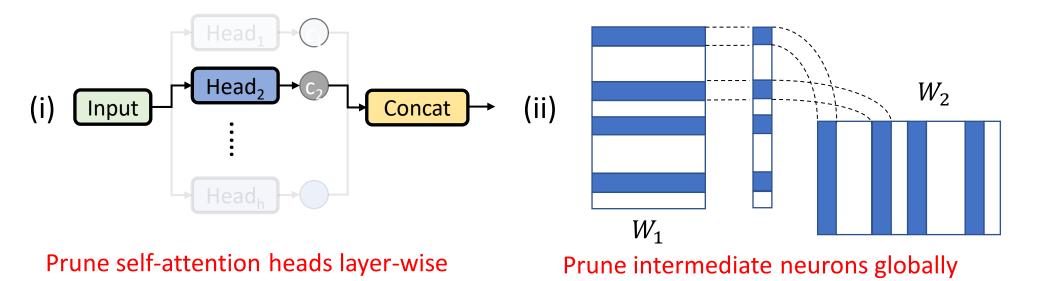
[3] "Learning efficient convolutional networks through network slimming", Zhuang Liu et al., ICCV 2017.

How to Draw EarlyBERT Tickets?

• We train the coefficients along with the model parameters, with l_1 regularization loss to promote sparsity

 $\mathcal{L}(f(\cdot;\theta),c) = \mathcal{L}_0(f(\cdot;\theta),c) + \lambda \|c\|_1,$

• When the coefficients are sufficiently trained, we prune self-attention heads and the intermediate neurons whose coefficients have smallest magnitudes



The Overall EarlyBERT framework

I. Searching Stage

II. Draw EarlyBERT Tickets

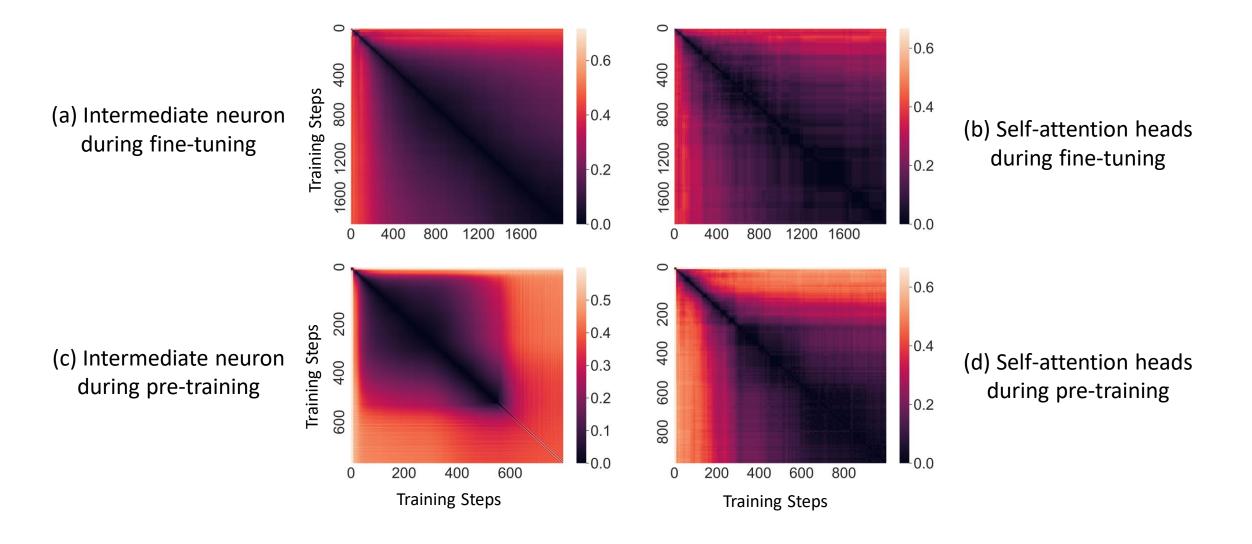
III. Efficiently train the EarlyBERT tickets. Pre-train **OR** Fine-tune

Dense training. Need to **sufficienly** train the coefficients.

Take the sub-structure that is essential for the performance. No extra cost.

Enjoy (i) <u>computation efficiency</u> due to **structured** sparsity; and (2) <u>data efficiency</u> due to reduced parameter complexity.

EarlyBERT Tickets Emerge Early



EarlyBERT Finds Non-Trivial Subnetworks

• Compare

- a) BERT_{Base}
- b) EarlyBERT_{Base}
- c) Random pruning
- Only self-attention heads are pruned here

Methods	MNLI	QNLI	QQP	SST-2
BERT _{BASE}	83.16	90.59	90.34	91.70
EarlyBERT _{BASE}	83.58	90.33	90.41	92.09
Random	82.26	88.87	90.12	91.17
Methods	CoLA	RTE	MRPC	
BERT _{BASE}	0.535	65.70	80.96	
EarlyBERT _{BASE}	0.527	66.19	81.54	
Random	0.514	63.86	78.57	

Empirical Results – Fine-tuning

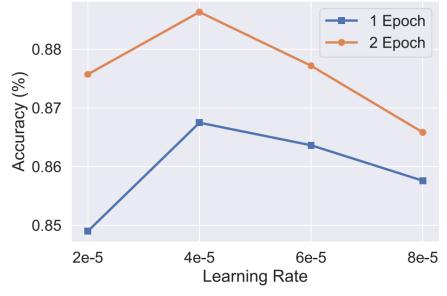
- We empirically evaluate EarlyBERT on GLUE and SQuAD tasks
 - We prune 4 self-attention heads in each layer
 - We prune 40% intermediate neurons globally

Methods	MNLI	QNLI	QQP	SST-2	SQuAD	Time Saved ²
BERT _{BASE}	83.16	90.59	90.34	91.70	87.50	-
EarlyBERT _{BASE}	81.81	89.18	90.06	90.71	86.13	$40 \sim 45\%$
Random _{BASE}	79.92	84.46	89.42	89.68	84.47	$45 \sim 50\%$
LayerDrop (Fan et al., 2019)	81.27	88.91	88.06	89.89	84.25	$\sim 33\%$
BERT _{LARGE}	86.59	92.29	91.59	92.21	90.76	-
EarlyBERT _{LARGE}	85.13	89.22	90.64	90.94	89.45	35~40%
Random _{LARGE}	78.45	84.46	89.89	88.65	88.79	$40 \sim 45\%$
LayerDrop (Fan et al., 2019)	85.12	91.12	88.88	89.97	89.44	$\sim 33\%$

Ablation Studies

Time Saving	3 Heads	4 Heads	5 Heads	6 Heads	
Prune Ratio					
FC - 30%	-35.78%	-38.66%	-41.26%	-45.34%	
10 5070	89.62%	89.55%	89.60%	89.50%	
FC - 40%	-39.72%	-42.97%	-43.93%	-44.49%	
	89.66%	89.61%	89.58%	89.38%	
FC - 50%	-43.89%	-45.54%	-47.02%	-48.53%	
	89.54%	89.35%	89.34%	89.31%	

(a) Performance-Efficiency Trade-off



(b) Data Efficiency of EarlyBERT

λ	10^{-4}	10^{-3}	10^{-2}
	88.55	88.43	88.42
# Pruned Heads	4	5	6
Layer-wise pruning	88.55	88.13	87.65
# Pruned Neurons	30%	40%	50%
Layer-wise pruning Global pruning	88.18 88.31	88.22 88.23	87.90 87.91

(c) Regularization and pruning method

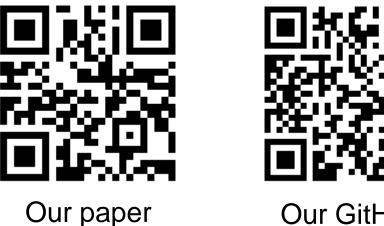
Empirical Results – Pre-training

- We perform 400 steps of training during the searching stage
- During the ticket-drawing stage
 - We prune 4 self-attention heads in each layer
 - We prune 30% intermediate neurons globally
- The EarlyBERT ticket is then pre-trained with reduced number of steps

Methods	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	SQuAD
BERT _{BASE}	0.45	81.40	84.07	89.86	89.80	60.29	90.48	87.60
EarlyBERT _{BASE}	0.41	79.97	80.39	89.86	89.44	61.01	90.94	85.48
BERT _{LARGE}	0.50	83.56	85.90	90.44	90.45	59.93	92.55	90.43
EarlyBERT _{LARGE}	0.47	82.54	85.54	90.46	90.38	61.73	91.51	89.36

Thank you for your attention!

Welcome to contact me for further questions or discussion via xiaohan.chen@utexas.edu



Our GitHub